Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
نویسندگان
چکیده
Self-splicing group I introns use guanosine as a nucleophile to cleave the 5' splice site. The guanosine-binding site has been localized to the G264-C311 base pair of the Tetrahymena intron on the basis of analysis of mutations that change the specificity of the nucleophile from G (guanosine) to 2AP (2-aminopurine ribonucleoside) (F. Michel et al. (1989) Nature 342, 391-395). We studied the effect of these mutations (G-U, A-C and A-U replacing G264-C311) in the L-21 ScaI version of the Tetrahymena ribozyme. In this enzymatic system (kcat/Km)G monitors the cleavage step. This kinetic parameter decreased by at least 5 x 10(3) when the G264-C311 base pair was mutated to an A-U pair, while (kcat/Km)2AP increased at least 40-fold. This amounted to an overall switch in specificity of at least 2 x 10(5). The nucleophile specificity (G > 2AP for the G-C and G-U pairs, 2AP > G for the A-U and A-C pairs) was consistent with the proposed hydrogen bond between the nucleotide at position 264 and N1 of the nucleophile. Unexpectedly, the A-U and A-C mutants showed a decrease of an order of magnitude in the rate of ribozyme-catalyzed hydrolysis of RNA, in which H2O or OH- replaces G as the nucleophile, whereas the G-U mutant showed a decrease of only 2-fold. The low hydrolysis rates were not restored by raising the Mg2+ concentration or lowering the temperature. In addition, the mutant ribozymes exhibited a pattern of cleavage by Fe(II)-EDTA indistinguishable from that of the wild type, and the [Mg2+]1/2 for folding of the A-U mutant ribozyme was the same as that of the wild type. Therefore the guanosine-binding site mutations do not appear to have a major effect on RNA folding or stability. Because changing G264 affects the hydrolysis reaction without perturbing the global folding of the RNA, we conclude that the catalytic role of this conserved nucleotide is not limited to guanosine binding.
منابع مشابه
A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
Protein enzymes appear to use extensive packing and hydrogen bonding interactions to precisely position catalytic groups within active sites. Because of their inherent backbone flexibility and limited side chain repertoire, RNA enzymes face additional challenges relative to proteins in precisely positioning substrates and catalytic groups. Here, we use the group I ribozyme to probe the existenc...
متن کاملCatalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site.
The site-specific endonuclease reaction catalyzed by the ribozyme from the Tetrahymena pre-rRNA intervening sequence has been characterized with a substrate that forms a "matched" duplex with the 5' exon binding site of the ribozyme [G2CCCUCUA5 + G in equilibrium with G2CCCUCU + GA5 (G = guanosine); Herschlag, D., & Cech, T.R. (1990) Biochemistry (preceding paper in this issue)]. The rate-limit...
متن کاملStructure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for ...
متن کاملExtraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function.
The Tetrahymena ribozyme derived from the self-splicing group I intron binds a 5'-splice site analog (S) and guanosine (G), catalyzing their conversion to a 5'-exon analog (P) and GA. Herein, we show that binding of guanosine is exceptionally slow, limiting the reaction at near neutral pH. Our results implicate a conformational rearrangement on guanosine binding, likely because the binding site...
متن کاملA kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 20 24 شماره
صفحات -
تاریخ انتشار 1992